怪物猎人2g爬虫的头,用爬虫技术能做到哪些有趣的事情?

2023-09-30 21:12:03 90阅读

怪物猎人2g爬虫的头,用爬虫技术能做到哪些有趣的事情?

看到这个问题必须来怒答一波~用python爬虫爬便宜机票了解一下?

喜欢旅行又怕吃土?让Python来爬取最便宜机票吧!

图源:

videoblocks.com

怪物猎人2g爬虫的头,用爬虫技术能做到哪些有趣的事情?

你喜欢旅行吗?

这个问题通常会得到一个肯定的答案,随后引出一两个有关之前冒险经历的故事。大多数人都认为旅行是体验新文化和开阔视野的好方法。但如果问题是“你喜欢搜索机票的过程吗?”也许话题就到此为止了……

可事实上,便宜的机票往往也很重要!本文将尝试构建一个网络爬虫,该爬虫对特定目的地运行并执行带有浮动日期(首选日期前后最多三天)的航班价格搜索。它会将结果保存为excel文件并发送一封包含快速统计信息的电子邮件。显然,这个爬虫的目的就是帮助我们找到最优惠的价格!

你可以在服务器上运行脚本(一个简单的Raspberry Pi就可以),每天运行一到两次。结果会以邮件形式发送,建议将excel文件存入Dropbox文件夹,以便随时随地查看。

因为爬虫以“浮动日期”进行搜索,所以它会搜索首选日期前后最多三天的航班信息。尽管该脚本一次仅运行一对目的地,但可以很容易地改写该爬虫使其每个循环运行多个目的地。最终甚至可能找到一些错误票价...那会很有意思!

另一个爬虫

某种意义上来讲,网络爬取是互联网“工作”的核心。

也许你认为这是一个十分大胆的说法,但谷歌就是从拉里·佩奇用Java和Python构建的网络爬虫开始的。爬虫不断地爬取信息,整个互联网都在试图为所有问题提供最佳的可能答案。网络爬取有不计其数的应用程序,即使更喜欢数据科学中的其他分支,你仍需要一些爬取技巧以获得数据。

这里用到的一些技术来自于最近新的一本佳作《Python网络数据采集》,书中包含与网络爬取相关的所有内容,并提供了大量简例和实例。甚至有一个特别有意思的章节,讲述如何解决验证码检验的问题。

Python的拯救

第一个挑战就是选择爬取信息的平台,本文选择了客涯(Kayak)。我们试过了Momondo, 天巡(Skyscanner), 亿客行(Expedia)和其它一些网站,但是这些网站上的验证码特别变态。

在那些“你是人类吗?”的验证中,尝试了多次选择交通灯、十字路口和自行车后,客涯似乎是最好的选择,尽管短时间内加载太多页面它会跳出安全检查。

我们设法让机器人每4到6个小时查询一次网站,结果一切正常。虽然说不定哪个部分偶尔会出点小问题,但是如果收到验证码,既可以手动解决问题后启动机器人,也可以等待几小时后的自动重启。

如果你是网络爬取新手,或者不知道为何有些网站花费很大力气阻止网络爬取,那么为构建爬虫写下第一行代码前,你一定要多加努力。

谷歌的“网络爬取规范”:

http://lmgtfy.com/?q=web+scraping+etiquette

系紧安全带...

导入并打开Chrome浏览器标签页后,会定义一些循环中会用到的函数。这个架构的构思大概是这样的:

· 一个函数用于启动机器人程序,表明想要搜索的城市和日期。

· 这个函数获得首轮搜索结果,按“最佳”航班排序,然后点击“加载更多结果”。

· 另一个函数会爬取整个页面,并返回一个dataframe数据表。

· 随后重复步骤2和步骤3,得出按“价格”和“航行时间”排序的结果。

· 发送一封简要总结价格(最低价和平均价)的邮件,并将带有这三种排序类型的dataframe数据表保存为一份excel文件。

· 以上所有步骤会在循环中重复,每X小时运行一次。

每个Selenium项目都以一个网页驱动器开始。我们使用Chromedriver驱动器,但还有其它选择。PhantomJS和Firefox也很受欢迎。下载Chromedriver后,将其置于一个文件夹中即可。第一行代码会打开一个空白Chrome标签页。

from time import sleep, strftime

from random import randint

import pandas as pd

from selenium import webdriver

from selenium.webdriver.common.keys import Keys

import smtplib

from email.mime.multipart import MIMEMultipart

# Change this to your own chromedriver path!

chromedriver_path = 'C:/{YOUR PATH HERE}/chromedriver_win32/chromedriver.exe'

driver = webdriver.Chrome(executable_path=chromedriver_path) # This will open the Chrome window

sleep(2)

这些是将用于整个项目的包。使用randint函数令机器人在每次搜索之间随机睡眠几秒钟。这对任何一个机器人来说都是必要属性。如果运行前面的代码,应该打开一个Chrome浏览器窗口,机器人会在其中导航。

一起来做一个快速测试:在另一个窗口上访问客涯网(http://kayak.com),选择往返城市和日期。选择日期时,确保选择的是“+-3天”。由于在编写代码时考虑到了结果页面,所以如果只想搜索特定日期,很可能需要做一些微小的调整。

点击搜索按钮在地址栏获取链接。它应该类似于下面所使用的链接,将变量kayak定义为url,并从网页驱动器执行get方法,搜索结果就会出现。

无论何时,只要在几分钟内使用get命令超过两到三次,就会出现验证码。实际上可以自己解决验证码,并在下一次验证出现时继续进行想要的测试。从测试来看,第一次搜索似乎一直没有问题,所以如果想运行这份代码,并让它在较长的时间间隔后运行,必须解决这个难题。你并不需要十分钟就更新一次这些价格,对吧?

每个XPath都有陷阱

到目前为止,已经打开了一个窗口,获取了一个网站。为了开始获取价格和其他信息,需要使用XPath或CSS选择器,我们选择了XPath。使用XPath导航网页可能会令人感到困惑,即使使用从inspector视图中直接使用“复制XPath”,但这不是获得所需元素的最佳方法。有时通过“复制XPath”这个方法获得的链接过于针对特定对象,以至于很快就失效了。《Python网络数据采集》一书很好地解释了使用XPath和CSS选择器导航的基础知识。

接下来,用Python选择最便宜的结果。上面代码中的红色文本是XPath选择器,在网页上任意一处右键单击选择“inspect”就可以看到它。在想要查看代码的位置,可以再次右键单击选择“inspect”。

为说明之前所观察到的从“inspector”复制路径的缺陷,请参考以下差异:

1 # This is what the copymethod would return. Right click highlighted rows on the right side and select “copy> Copy XPath”//*[@id=“wtKI-price_aTab”]/div[1]/div/div/div[1]/div/span/span

2 # This is what I used todefine the “Cheapest” buttoncheap_results= ‘//a[@data-code = “price”]’

第二种方法的简洁性清晰可见。它搜索具有data-code等于price属性的元素a。第一种方法查找id等于wtKI-price_aTab的元素,并遵循第一个div元素和另外四个div和两个span。这次……会成功的。现在就可以告诉你,id元素会在下次加载页面时更改。每次页面一加载,字母wtKI会动态改变,所以只要页面重新加载,代码就会失效。花些时间阅读XPath,保证你会有收获。

不过,使用复制的方法在不那么“复杂”的网站上工作,也是很好的!

基于以上所展示的内容,如果想在一个列表中以几个字符串的形式获得所有搜索结果该怎么办呢?其实很简单。每个结果都在一个对象中,这个对象的类是“resultWrapper”。获取所有结果可以通过像下面这样的for循环语句来实现。如果你能理解这一部分,应该可以理解接下来的大部分代码。它基本上指向想要的结果(结果包装器),使用某种方式(XPath)获得文本,并将其放置在可读对象中(首先使用flight_containers,然后使用flight_list)。

前三行已展示在图中,并且可以清楚地看到所需的内容,但是有获得信息的更优选择,需要逐一爬取每个元素。

准备起飞吧!

最容易编写的函数就是加载更多结果的函数,所以代码由此开始。为了在不触发安全验证的前提下最大化所获取的航班数量,每次页面显示后,单击“加载更多结果”。唯一的新内容就是所添加的try语句,因为有时按钮加载会出错。如果它对你也有用,只需在前面展示的start_kayak函数中进行简要注释。

# Load more results to maximize the scraping

def load_more():

try:

more_results = '//a[@class = “moreButton”]'

driver.find_element_by_xpath(more_results).click()

# Printing these notes during the program helps me quickly check what it is doing

print('sleeping…..')

sleep(randint(45,60))

except:

pass

现在,经过这么长的介绍,已经准备好定义实际爬取页面的函数。

我们编译了下一个函数page_scrape中的大部分元素。有时这些元素会返回列表插入去程信息和返程信息之间。这里使用了一个简单的办法分开它们,比如在第一个 section_a_list和section_b_list变量中,该函数还返回一个flight_df数据表。所以可以分离在不同分类下得到的结果,之后再把它们合并起来。

def page_scrape():

“““This function takes care of the scraping part”““

xp_sections = '//*[@class=“section duration”]'

sections = driver.find_elements_by_xpath(xp_sections)

sections_list = [value.text for value in sections]

section_a_list = sections_list[::2] # This is to separate the two flights

section_b_list = sections_list[1::2] # This is to separate the two flights

# if you run into a reCaptcha, you might want to do something about it

# you will know there's a problem if the lists above are empty

# this if statement lets you exit the bot or do something else

# you can add a sleep here, to let you solve the captcha and continue scraping

# i'm using a SystemExit because i want to test everything from the start

if section_a_list == []:

raise SystemExit

# I'll use the letter A for the outbound flight and B for the inbound

a_duration = []

a_section_names = []

for n in section_a_list:

# Separate the time from the cities

a_section_names.append(''.join(n.split()[2:5]))

a_duration.append(''.join(n.split()[0:2]))

b_duration = []

b_section_names = []

for n in section_b_list:

# Separate the time from the cities

b_section_names.append(''.join(n.split()[2:5]))

b_duration.append(''.join(n.split()[0:2]))

xp_dates = '//div[@class=“section date”]'

dates = driver.find_elements_by_xpath(xp_dates)

dates_list = [value.text for value in dates]

a_date_list = dates_list[::2]

b_date_list = dates_list[1::2]

# Separating the weekday from the day

a_day = [value.split()[0] for value in a_date_list]

a_weekday = [value.split()[1] for value in a_date_list]

b_day = [value.split()[0] for value in b_date_list]

b_weekday = [value.split()[1] for value in b_date_list]

# getting the prices

xp_prices = '//a[@class=“booking-link”]/span[@class=“price option-text”]'

prices = driver.find_elements_by_xpath(xp_prices)

prices_list = [price.text.replace('$','') for price in prices if price.text != '']

prices_list = list(map(int, prices_list))

# the stops are a big list with one leg on the even index and second leg on odd index

xp_stops = '//div[@class=“section stops”]/div[1]'

stops = driver.find_elements_by_xpath(xp_stops)

stops_list = [stop.text[0].replace('n','0') for stop in stops]

a_stop_list = stops_list[::2]

b_stop_list = stops_list[1::2]

xp_stops_cities = '//div[@class=“section stops”]/div[2]'

stops_cities = driver.find_elements_by_xpath(xp_stops_cities)

stops_cities_list = [stop.text for stop in stops_cities]

a_stop_name_list = stops_cities_list[::2]

b_stop_name_list = stops_cities_list[1::2]

# this part gets me the airline company and the departure and arrival times, for both legs

xp_schedule = '//div[@class=“section times”]'

schedules = driver.find_elements_by_xpath(xp_schedule)

hours_list = []

carrier_list = []

for schedule in schedules:

hours_list.append(schedule.text.split('\n')[0])

carrier_list.append(schedule.text.split('\n')[1])

# split the hours and carriers, between a and b legs

a_hours = hours_list[::2]

a_carrier = carrier_list[1::2]

b_hours = hours_list[::2]

b_carrier = carrier_list[1::2]

cols = (['Out Day', 'Out Time', 'Out Weekday', 'Out Airline', 'Out Cities', 'Out Duration', 'Out Stops', 'Out Stop Cities',

'Return Day', 'Return Time', 'Return Weekday', 'Return Airline', 'Return Cities', 'Return Duration', 'Return Stops', 'Return Stop Cities',

'Price'])

flights_df = pd.DataFrame({'Out Day': a_day,

'Out Weekday': a_weekday,

'Out Duration': a_duration,

'Out Cities': a_section_names,

'Return Day': b_day,

'Return Weekday': b_weekday,

'Return Duration': b_duration,

'Return Cities': b_section_names,

'Out Stops': a_stop_list,

'Out Stop Cities': a_stop_name_list,

'Return Stops': b_stop_list,

'Return Stop Cities': b_stop_name_list,

'Out Time': a_hours,

'Out Airline': a_carrier,

'Return Time': b_hours,

'Return Airline': b_carrier,

'Price': prices_list})[cols]

flights_df['timestamp'] = strftime(“%Y%m%d-%H%M”) # so we can know when it was scraped

return flights_df

尽量让这些名字容易理解。记住变量a表示旅行的去程信息,变量b表示旅行的返程信息。接下来说说下一个函数。

等等,还有什么吗?

截至目前,已经有了一个能加载更多结果的函数和一个能爬取其他结果的函数。本可以在此结束这篇文章,而你可以自行手动使用这些函数,并在浏览的页面上使用爬取功能。但是前文提到给自己发送邮件和一些其他信息的内容,这都包含在接下来的函数start_kayak中。

它要求填入城市名和日期,并由此打开一个kayak字符串中的地址,该字符串直接跳转到“最佳”航班结果排序页面。第一次爬取后,可以获取价格的顶部矩阵,这个矩阵将用于计算平均值和最小值,之后和客涯(Kayak)的预测结果(页面左上角)一同发送到邮件中。这是单一日期搜索时可能导致错误的原因之一,因其不包含矩阵元素。

def start_kayak(city_from, city_to, date_start, date_end):

“““City codes - it's the IATA codes!

Date format - YYYY-MM-DD”““

kayak = ('https://www.kayak.com/flights/' + city_from + '-' + city_to +

'/' + date_start + '-flexible/' + date_end + '-flexible?sort=bestflight_a')

driver.get(kayak)

sleep(randint(8,10))

# sometimes a popup shows up, so we can use a try statement to check it and close

try:

xp_popup_close = '//button[contains(@id,”dialog-close”) and contains(@class,”Button-No-Standard-Style close “)]'

driver.find_elements_by_xpath(xp_popup_close)[5].click()

except Exception as e:

pass

sleep(randint(60,95))

print('loading more.....')

# load_more()

print('starting first scrape.....')

df_flights_best = page_scrape()

df_flights_best['sort'] = 'best'

sleep(randint(60,80))

# Let's also get the lowest prices from the matrix on top

matrix = driver.find_elements_by_xpath('//*[contains(@id,”FlexMatrixCell”)]')

matrix_prices = [price.text.replace('$','') for price in matrix]

matrix_prices = list(map(int, matrix_prices))

matrix_min = min(matrix_prices)

matrix_avg = sum(matrix_prices)/len(matrix_prices)

print('switching to cheapest results…..')

cheap_results = '//a[@data-code = “price”]'

driver.find_element_by_xpath(cheap_results).click()

sleep(randint(60,90))

print('loading more…..')

# load_more()

print('starting second scrape…..')

df_flights_cheap = page_scrape()

df_flights_cheap['sort'] = 'cheap'

sleep(randint(60,80))

print('switching to quickest results…..')

quick_results = '//a[@data-code = “duration”]'

driver.find_element_by_xpath(quick_results).click()

sleep(randint(60,90))

print('loading more…..')

# load_more()

print('starting third scrape…..')

df_flights_fast = page_scrape()

df_flights_fast['sort'] = 'fast'

sleep(randint(60,80))

# saving a new dataframe as an excel file. the name is custom made to your cities and dates

final_df = df_flights_cheap.append(df_flights_best).append(df_flights_fast)

final_df.to_excel('search_backups//{}_flights_{}-{}_from_{}_to_{}.xlsx'.format(strftime(“%Y%m%d-%H%M”),

city_from, city_to,

date_start, date_end), index=False)

print('saved df…..')

# We can keep track of what they predict and how it actually turns out!

xp_loading = '//div[contains(@id,”advice”)]'

loading = driver.find_element_by_xpath(xp_loading).text

xp_prediction = '//span[@class=“info-text”]'

prediction = driver.find_element_by_xpath(xp_prediction).text

print(loading+'\n'+prediction)

# sometimes we get this string in the loading variable, which will conflict with the email we send later

# just change it to “Not Sure” if it happens

weird = '¯\\_(ツ)_/¯'

if loading == weird:

loading = 'Not sure'

username = 'YOUREMAIL@hotmail.com'

password = 'YOUR PASSWORD'

server = smtplib.SMTP('smtp.outlook.com', 587)

server.ehlo()

server.starttls()

server.login(username, password)

msg = ('Subject: Flight Scraper\n\n\

Cheapest Flight: {}\nAverage Price: {}\n\nRecommendation: {}\n\nEnd of message'.format(matrix_min, matrix_avg, (loading+'\n'+prediction)))

message = MIMEMultipart()

message['From'] = 'YOUREMAIL@hotmail.com'

message['to'] = 'YOUROTHEREMAIL@domain.com'

server.sendmail('YOUREMAIL@hotmail.com', 'YOUROTHEREMAIL@domain.com', msg)

print('sent email…..')

虽然没有使用Gmail账户测试发送邮件,但是可以搜索到很多的替代方法,前文提到的那本书中也有其他方法来实现这一点。如果已有一个Hotmail账户,只要替换掉个人的详细信息,它就会开始工作了。

如果想探索脚本的某一部分正在做什么,可以将脚本复制下来并在函数外使用它。这是彻底理解它的唯一方法。

利用刚才创造的一切

在这些步骤之后,还可以想出一个简单的循环来使用刚创造的函数,同时使其持续运行。完成四个“花式”提示,写下城市和日期(输入)。因为测试时不想每次都输入这些变量,需要的时候可以使用以下这个清楚的方式进行替换。

如果已经做到了这一步,恭喜你!改进还有很多,比如与Twilio集成,发送文本消息而不是邮件。也可以使用VPN或更加难懂的方式同时从多个服务器上研究搜索结果。还有就是验证码的问题,验证码会时不时地跳出来,但对此类问题还是有解决办法的。不过,能走到这里已经是有很牢固的基础了,你可以尝试添加一些额外的要素。

使用脚本运行测试的示例

留言 点赞 关注

我们一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

网络大数据采集模式有哪些?

极简工业分为基于公有云广域工业互联网和私有云局域工业互联网。

其中私有云采用工业以太网+工业现场总线+IO采集+私有云平台实现,对数据安全比较敏感的用户比较适合。

公有云广域工业互联网平台则采用2G/3G/4G/ADSL+工业以太网+工业现场总线+IO采集+公有云平台实现,相对于私有云平台,使用更简便,实施成本更低。

对于私有云这是一种相对较重的技术,会造成后续的维护成本增加,一般只有军工、国有大型企业才会选择,下面我们更多的讨论基于公有云的工业互联网通讯信道选择:

3.1、ADSL信道

有线上网,这一技术方式可靠性高,数据时延可控,网络也相对稳定,在很多要求高的场合常常采用此一技术。

特点:

a)可靠性高,速度快,延时小;

b)可以申请固定IP或者仍然使用动态IP均可;

c)最好与商业网络分离,以此来提高可靠性,减少网络不可预见的冲突而影响可靠性;

d)需要设置局域网IP;

目前极简工业(微信搜索极简工业小程序)极好的支持ADSL,用户可以通过ADSL实现数据的采集和监控。

这一技术路线的优点非常明显,但相对于移动互联网来说,维护要麻烦一点,而且经常用户并不会提供单独的网格,从而降低了系统的稳定性。建议在使用时能够单独一个网络。

3.2 2G移动互联网

2G网络是从90年代开始使用的,基于2G的GPRS-DTU也成为了移动数采系统的标配。笔者也是从2000年左右开始在各种项目中使用此类产品。

但早期的用组态软件加花生壳加GPRS-DTU的移动数采系统有很大的安全漏洞,极简工业针对目前存在的问题,开发了第四代的移动工业互联网平台技术。

特点:

a)相对4G成本低廉;

b)稳定性较高,掉线掉网较少;极简工业更增加了大量的措施来保障网络的稳定性;

c)速度相对工业数据采集足够,最快可以达到 300mS/帧;

d)联通的2G已经宣布会逐步停掉,把频点用来做5G;而移动因为3G很烂,所以宣布2G在五年内仍会保持,笔者认为在NB-IOT不如预期有效的情况下,移动的4/5G用于消费类网络,而2G用于工业互联网的架构在五年内仍是最优的方案;

3.3 3G/4G移动互联网

这里说的3G主要是联通的3G,因为移动的3G基本上是个半拉子工程。3G在工业中的存在感非常不够,很多客户仍在使用2G,即便升级也大多直接一步到位升级到4G。

java面试题有哪些?

虽然现在大厂内卷现象泛滥,而且996的传统依旧肆虐。但没有哪位程序员能架得住互联网大厂的高薪职位诱惑。特别是我还有一位在阿里工作7年多的老表,在其耳旁风之下,不断将大厂描绘的美丽风景刻画在我脑海中,也让我一直有着想进大厂镀金的梦想。

所以为了完成这次进大厂的梦想,前段时间特意拜托老表爆肝一周之后,才梳理好的这份10W字的“Java高级程序员面试精华题”也帮助我在金三银四的最后时段赶上了跳槽季的末班车,成功入职字节!

虽然金三银四黄金跳槽期虽然已过,如果你现在还想跳槽进入大厂,后面的金九银十也不失为一个好机会。利用这4-5个月的时间里好好储备下技术能力,刷一刷面试题。也为跳槽作一作万全准备。

现在我把这份文档分享出来给每位看到的有缘人,为大家节省一点找资料、翻文献、刷题的时间。

面试文档涵盖:微服务、分布式中间件、并发编程、数据库,Spring/MyBatis/Netty等主流框架,需要的小伙伴转发+关注我后直接私信【666】即可获取资料免费下载方式!

主目录展示:常用主流框架篇

涵盖Srping、MyBatis、Netty

微服务篇

涵盖Spring Boot、Dubbo、Spring Cloud及Spring Cloud相关组件原理

并发编程篇

涵盖并发编程所有技术点的面试

分布式中间件合集

涵盖RPC框架、Zookeeper、Redis、Nginx、RabbitMQ、Kafka、MongDB、Memcached。

性能调优合集

涵盖JVM、MySql、Tomcat

需要文档的小伙伴转发+关注我后直接私信【666】即可获取资料免费下载方式!

大数据的含义和作用是什么?

大数据(英语:Big data),又称为巨量资料,指的是在传统数据处理应用软件不足以处理的大或复杂的数据集的术语大数据的特点

体积大

数据量很重要。对于大数据,将不得不处理大量的低密度,非结构化数据。这可能是价值未知的数据,例如Twitter数据供稿,网页或移动应用程序上的点击流或启用传感器的设备。对于某些组织,这可能是数十兆字节的数据。对于其他人,可能是数百PB。

PB是硬盘存储容量单位,存储容量:是该存储设备上可以存储数据的最大数量,通常使用千字节(kb kilobyte)、兆字节(MB megabyte)、吉字节(GB, gigabyte)、太字节(TB ,terabyte)和PB(Petabyte)、EB(Exabyte)等来衡量。1PB=1024TB=1024 * 1024 GB一部1080P高清电影 2G 左右,大概就是 50W部高清电影

速度

速度是接收和(或可能)作用于数据的快速速率。通常,与直接写入磁盘相比,数据流直接进入内存的速度最高。一些支持互联网的智能产品会实时或近乎实时地运行,因此需要实时评估和采取措施。

多样性

多样性是指可用的多种数据类型。传统的数据类型经过结构化,可以整齐地放置在关系数据库中。随着大数据的兴起,数据进入了新的非结构化数据类型。非结构化和半结构化的数据类型(例如文本,音频和视频)需要进行额外的预处理才能得出含义并支持元数据。

真实性

它是指数据中的不一致和不确定性,即可用数据有时会变得混乱,并且质量和准确性难以控制。

大数据也是可变的,因为多种不同的数据类型和数据源会产生大量的数据维度。

价值

除非将其转化为有用的东西,否则大量没有价值的数据对公司没有好处。

数据本身没有用处或重要性,但需要将其转换为有价值的信息以提取信息。

大数据作用

指引产品开发

Netflix和宝洁等公司使用大数据来预测客户需求。他们通过对过去和当前产品或服务的关键属性进行分类并对这些属性与产品的商业成功之间的关系进行建模,从而为新产品和服务建立了预测模型。此外,宝洁还使用焦点小组,社交媒体,测试市场和早期商店推出的数据和分析来计划,生产和推出新产品。

预测性维护

可以预测机械故障的因素可能深深地埋在结构化数据中,例如设备的年份,制造商和型号,以及覆盖数百万条日志条目,传感器数据,错误消息和发动机温度的非结构化数据。通过在问题发生之前分析这些潜在问题的征兆,组织可以更有效地部署维护并最大化零件和设备的正常运行时间。

提升客户体验

客户竞赛在进行中。现在比以往任何时候都更可能更清晰地了解客户体验。大数据使您能够从社交媒体,Web访问,呼叫日志和其他来源收集数据,以改善交互体验并最大程度地实现交付的价值。开始提供个性化报价,减少客户流失并主动处理问题。

机器学习

机器学习现在是一个热门话题。数据(尤其是大数据)是原因之一。现在,我们可以教授机器而不是对其进行编程。大数据的可用性可训练机器学习模型,从而使之成为可能。

推动创新

大数据可以通过研究人员,机构,实体和流程之间的相互依赖性,然后确定使用这些见解的新方法来帮助您进行创新。使用数据洞察力来改进有关财务和计划考虑因素的决策。检查趋势以及客户希望提供什么新产品和服务。实施动态定价。有无穷的可能性。

引申

现在社交媒体(微信,微博,短视频),电商都有海量数据。头条可以根据用户行为进行精准推送内容或是广告。电商可以根据数据推送有购买意向的产品。

当前大数据时代只要是有海量用户,就可以根据用户的行为进行分析从而衍生出新的价值信息。

人工智能的前提就是通过海量数据,进行模型训练从而形成自己的计算方式。16年时谷歌人工智能机器人阿尔法狗大败世界围棋冠军李世石。围棋是人类引以为傲的高智商游戏,但最终败给了机器人。机器人就是前期通过海量数据进行计算不断的完善。

大数据的快速发展,也带来了很多问题。例如鼎鼎大名的脸书用户隐私泄漏事件。大数据中含有很多用户隐私数据,不正当的使用会造成灾难事故。

大数据未来还可以在更多的领域中使用,未来也将会出现更多的技术弥补大数据的漏洞。

请点赞支持下吆,留言关注交流。

买笔记本电脑显卡是2GB好?

谢邀,能把学习的内容说的再具体点么,如果是单纯的计算机编程和软件开发,数据分析,爬虫等,八代酷睿I5/锐龙R5+750/MX150足矣,如果会牵扯到一些PS,入门的3D建模,那么可以选八代酷睿I5/锐龙R5+1050/MX250,如果深度学习,建议买惠普或者联想的移动工作站,只是学编程或者入门级别的PS,建模,2G卡足矣,只有深度学习才会用到4/6G的卡,另外,深度学习要么买移动工作站(可以换显卡的那种),要么自己配二A平台+丽台专业卡的台式机!

免责声明:由于无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如我们转载的作品侵犯了您的权利,请您通知我们,请将本侵权页面网址发送邮件到qingge@88.com,深感抱歉,我们会做删除处理。

目录[+]